

SSCN8050GS6

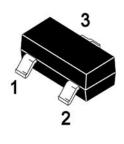
High Frequency High Gain NPN Power BJT

Features

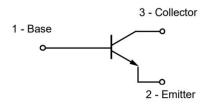
VCE	VBE	VCESAT Typ.	IC
25V	5V	500mV	1500mA

> Description

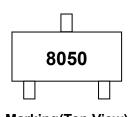
This device is produced with advanced high carrier density technology, which is especially used to minimize saturation voltage drop. This device particularly suits low voltage applications such as portable equipment, power management and other battery powered circuits, and low in-line power dissipation are needed in a very small outline surface mount package. Excellent thermal and electrical capabilities.


Applications

- Supply line switching circuits
- Battery management application
- DC/DC converter applications


Ordering Information

Device	Package	Shipping
SSCN8050GS6	SOT-23	3000/Reel


Pin configuration

SOT-23

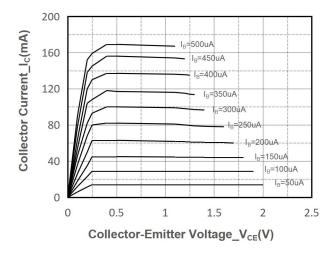
Circuit Diagram

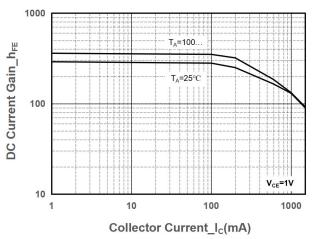
Marking(Top View)

SSCN8050GS6

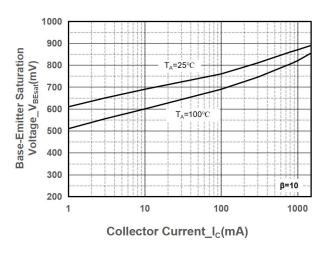
2/5

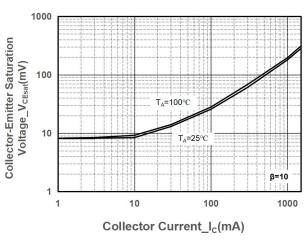
ightharpoonup Absolute Maximum Ratings(T_A=25°C unless otherwise noted)


Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	40	V
Collector- Emitter Voltage	V _{CEO}	25	V
Emitter-Base Voltage	V _{EBO}	5	V
Collector Current-Continuous	Ic	1500	mA
Collector Power Dissipation	Pc	1000	mW
Junction Temperature	TJ	150	$^{\circ}$
Storage Temperature	T _{STG}	-55 to 150	$^{\circ}$

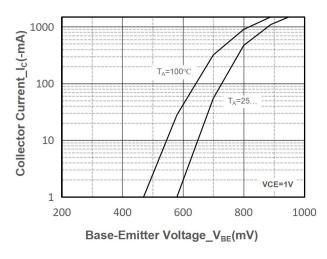

➤ Electrical Characteristics (T_A=25°C unless otherwise noted)

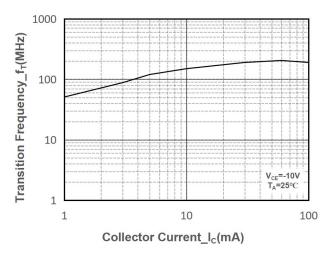
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Collector-Base Breakdown Voltage	BV _{CBO}	$I_C=0.1$ mA, $I_E=0$	40			V
Collector-emitter Breakdown Voltage	BV _{CEO}	I _C =1mA,I _B =0	25			V
Emitter -Base Breakdown Voltage	BV _{EBO}	I _E =0.1mA,I _C =0	5			V
Collector Cutoff Current	I _{CBO}	V _{CB} =35V,I _E =0			0.1	μA
Emitter Cutoff Current	I _{EBO}	V _{EB} =4V,I _C =0			0.1	μA
DC Current Gain	h _{FE}	V _{CE} =1V,I _C =100mA	85		400	
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C =800mA,I _B =80mA			0.5	V
Base-Emitter Saturation Voltage	V _{BE(sat)}	I _C =800mA,I _B =80mA			1.2	V
Transition fraguency	f⊤	V _{CE} =6V,I _C =20mA	150			MHz
Transition frequency		f=30MHz				IVITZ


> Typical Performance Characteristics (T_A=25℃ unless otherwise noted)



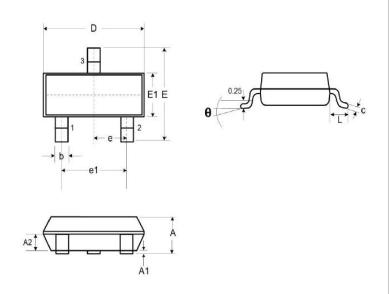
Collector Current vs. Collector-Emitter Voltage


DC Current Gain vs. Collector Current



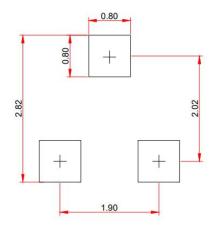
V_{BE(sat)} vs. Collector Current

V_{CE(sat)} vs. Collector Current



Collector Current vs. Base-Emitter Voltage

Transition Frequency vs. Collector Current



Package Information

DIM	Millimeters			
	Min.	Тур.	Max.	
Α	0.89	-	1.12	
A 1	0.01	ı	0.10	
A2	0.88	0.95	1.02	
b	0.30	-	0.51	
С	0.08	-	0.18	
D	2.80	2.90	3.04	
E	2.10	2.37	2.64	
E1	1.20	1.30	1.40	
е		0.95		
e1		1.90		
L	0.40	0.50	0.60	
L1	0.55			
N		3		
θ	0°	-	8°	

Recommended Pad outline(Unit: mm)

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G,. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.